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Abstract

This paper presents an SQP-based interior point technique for solv-

ing the general nonlinear programming problem using trust region

globalization and the Coleman-Li scaling. The SQP subproblem is

decomposed into a normal and a reduced tangential subproblem in
the tradition of numerous works on equality constrained optimization,

and strict feasibility is maintained with respect to the bounds. This
is intended to be an extension of previous work by Coleman & Li and

Vicente. Though no theoretical proofs of convergence are provided,
some computational results are presented which indicate that this al-

gorithm holds promise. The computational experiments have been

geared towards improving the semi-local convergence of the algorithm;

in particular high sensitivity of the speed of convergence with respect
to the fraction of the trust region radius allowed for the normal step

and with respect to the initial trust region radius are observed. The

chief advantages of this algorithm over primal-dual interior point al-

gorithms are better handling of the 'sticking problem' and a reduction
in the number of variables by elimination of the multipliers of bound
constraints.
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1 Introduction

This paper focuses on an algorithm for solving the general nonlinear pro-

gramming problem in the form

rain f(x)
X

8.t. h(z) = 0

a < x _< b (NLP)

where f : 7_n _ 7_, h : 7_n _ 7_m are twice continuously differentiable

mappings and m < n. Recently at least two excellent pieces of work on using

trust region globalization in interior point techniques for solving nonlinear

optimization problems have appeared. Coleman and Li in [1] and [2] discuss

interior point algorithms for solving the bound-constrained problem

min f(x)

s.t. a<x<_b

Vicente in his Ph.D. thesis [3] extensively deals with an extended form of

the above problem with equality constraints having a special structure, and

bounds only on the control variables u:

where dim(C)= dim(y).

min f(y, u)
YTU

C(y, u) = 0

a<u<b

Both [1] and [3] rigorously prove global convergence, second-order con-

vergence under reasonable assumptions 2 and local q-quadratic convergence

in their respective settings. This article draws on the results and accrues

on the experiences of the two aforementioned works and extends their al-

gorithms to handle problem (NLP). Though no proofs are provided, the

1This takes into account inequality constraints g(z) <_ 0 as well since inequalities can

be converted to equalities by adding slack variables and imposing, nonnegativity bounds

on the slacks.

2Second order convergence denotes convergence to a point satisfying second order nec-

essary conditions for a local minimum.



Mgorithm described here has been implemented and computationally tested

and found to be reasonably successful; more testing is in progress. An im-

portant observation made in this paper is that the trust region subproblems

in the scaled and unscaled steps are not equivalent, contrary to Coleman &:

Li's claim in [1], and this fact is proved in the appendix.

2 Preliminaries

The proposed algorithm here, like its predecessors in Coleman and Li [1]

and Vicente [3], starts at a point strictly feasible with respect to the bounds

on the variables and produces iterates that are strictly feasible with respect

to the bounds (i.e. 'in the interior'). The steps in the algor!thm, as in the

above two, can be motivated by applying Newton's method to a very spe-

cial statement of neccesary condition for optimality for problem (NLP), as

stated in the following exposition:

Let /(x,A) = f(x) + ATh(x) (which is not the Lagrangian for problem

(NLP), since the Lagrangian would also involve the multipliers correspond-

ing to the bound constraints). Define the diagonal scaling matrix D(x) as

D(x)=diag(d(x)),

where

V/_--Xi,
di(x) = _,

1,

if (Vfl(x, A))i < 0 and b_ <

if (Vg(x, A))_> 0 and a_> -_,
otherwise

Then (x*, A*) satisfy first order necessary conditions for optimality of prob-

lem (NLP) if and only if

D2(x*)Vj(x*,;)=O

h(x*) = 0 (1)

The proof for the above becomes obvious on a closer scrutiny of the Karush-

Kuhn-Tucker conditions for problem (NLP), which requires the existence of

(x*, A*, #a, #_ ) satisfying

v.l(_*, ;)- _ + ,; = o



= 0,

where #_ and #_ are vectors of non-negative multipliers of the finite bound

constraints, satisfying the complementarity conditions:

xT)= o

for all i corresponding to x_ with finite bounds.

(2)

Keeping in mind that a positive or negative value of (Vj(x*, A*))i can

only be canceled in the above by respectively a positive #a_ or a positive #b_,

complementarity makes the equivalence between (1) and (2) obvious.

Quite clearly, other possible choices of D(x) exist which permit the above

equivalence, however the above choice with square roots of the distances of

the variables from the bounds permits local q-quadratic convergence for the

treatments in Coleman and Li[1] and Vicente [3] in spite of the nonsmooth-

ness of D2(x) and hence is our choice here.

2.1 Newton step

Let y(x) be a vector such that

O(d_(x))

7]i(x) - 0xi ,i = 1,...,n

The above definition of rl(x) is equivalent to"

-1, if (Vj(x, _))i < 0 and bi < oo
z/i(x ) = 1, if (VJ(x,A))i _> 0 and ai > -oo, (3)

0, otherwise

Then it can be shown that a Newton step in (x, A) on nonlinear system

(1) is given by

[D2(x)V2l(x,)_) + diag(V_l(x,)O)diag(_(x))]Ax + D2(x)Vxh(x)A)_

= -D2(x)Vj(x,A) (4)

v h(x) tax =



Multiplying throughout on the left of the first equation by D-2(x), the above

system can be equivalently written as

IV 2zl( x, _ )+diag( V zl( x, )_) )diag(rl( x ) )D-2( x )]/kx + V _h(x )/k _ = - Vzl(x, _ )

V_h(x) TAx = -h(x)

Introducing the scaled step /k_ = D-l(x)/kx, the above system takes

the form

[V21(x,)_)D(x) + diag(Vzl(x,)t))diag(_?(x))D-l(x)]/x_. + Vxh(x)/k_

= -D2(x)VJ(x,

[D(x)V_h(x)] T A_ = -h(x)

Multiplying throughout on the left of the first equation by D(x) and

remembering that diagonal matrix multiplication commutes, we arrive at

the system

[(D(x)V2I(x,A)D(x) + diag(VJ(x,)t))diag(_l(x))]A_ + D(x)Vzh(x)/k)_

=

[D(x)V,h(x)] T A2 = -h(x) (6)

3 Trust region SQP formulation

The trust region subproblems based on the above Newton steps can be

formulated in terms of the scaled step g or in terms of the unscaled step;

we shall do both and compare their performances. Even though Coleman

_z Li in [1], pg. 422, state that the two formulations are equivalent, we

prove that the steps generated by the two formulations can be completely

different when the Newton step does not lie within the trust region (see

Appendix A)..In fact, this may be the only explanation for their difference

in computational performances. Even though the scaling is only a linear

transformation, it is introduced in a nonlinear setting, and hence creates a

difference. 3

3This is similar to the phenomenon that the steps generated by the log barrier method

in primal-dual interior point techniques and those generated by the damped, perturbed
KKT formulation never agree, as shown by Tapia (see Tech Report TR92-40, Dept.
of Computational & Applied Math, Rice University by E1-Bakry, Tapia, Zhang and
Tsuchiya).
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3.1 Scaled step subproblems

System (6) suggests the following trust-region SQP 4 subproblem in terms

of the scaled step _ (ll.ll denotes the 12 norm all throughout):

min _T H_ + [D(x)Vj(x,_)]T_

s.t. [D(x)V_h(x)]T_ + h(x) = 0

where

H = D(x)V_l(x,_)D(x) + diag(V,l(x,_))diag(rl(x))

It is well-known that if the trust region constraint on the length of the step

is not active, the solution to the above in the primal and dual variables

is exactly the Newton step in (&, A) given by system (6). However, this

subproblem may well be infeasible, and this is taken care of by a bilevel step

decomposition approach, the description of which follows.

3.1.1 Step decomposition

In the tradition of numerous works on equality constrained optimization

works in recent years (see, for example, [8], [10], [4], [3], to name only a

few), we adopt a bilevel approach and decompose the trust region SQP

subproblem above into the two subproblems below:

min II[D(x)V_:h(x)]Ts_ + h(x)ll 2
Sn

t. II  ll <

where v E (0, 1), usually chosen to be E [0.5; 0.8], followed by

rain 1_ T H_ + [D(x)Vj(x, _)]_
8t Z

s.t. [D(x)V_h(x)]T_ = [D(x)Vxh(x)]Ts_

4Sequential Quadratic Programming



where _ is the full step _ = s_ + s_. The linear equality constraints ensure

that the improvement in the model for attaining feasibility is not disturbed.

The latter subproblem can be written in terms of step st in the more useful

form below:

min lsTHst+ [D(x)V_l(x,)_)+ Hsn]Tst
St Z

s.t. [D(x)V_h(x)]Tst = 0

Then x is updated as

x + • + +

The first of these is usually called the normal or vertical subproblem,

while the latter is referred to as the tangential or horizontal subproblem.

It is again clear that if the trust-region constraint is inactive in both the

subproblems, then the step sn + st is exactly the same as the Newton step

in _ given by system (6). If the trust region radius is too small to al-

low the earlier 'undecomposed' subproblem to be feasible, the normal sub-

problem has the trust region constraint active. Observe how not having

[D(x)Vxh(x)]Tsn + h(x) = O, i.e., not having the earlier 'undecomposed'

subproblem feasible, does not affect the algorithm any more.

It is important to note here that this bilevel aproach does not actu-

ally give us a step in _. So we update lambda using a projection formula.

Remembering that at optimality

i.e., D2(x*)Vxf(x *) + D_(x*)Vxh(x*)ik * = 0

we take _ at each iteration to be the least squares solution of

D2(x)V_h(x)A = -D2(x)V_f(x)

or, in other words,

= -[(D2(x)Vxh(x))T(D2(x)V h(x))]-l(D2(x)Vxh(x))TD2(x)V f(x).
(7)



This computation is elaborated on later.

Following common practice in equality constrained optimization, we do

not actually solve the tangential subproblem with the equality constraints

[D(x)Vxh(x)]Tst = 0 but instead force the step st to be inA/([D(x)Vxh(x)]T),

the nullspace of the scaled Jacobian of h(x) so that the equality constraints

are automatically satisfied. More specifically, the QR factorization of [D2(x)V_h(x)] T

is computed, which also helps with the multiplier update, and a basis Z(x)

for the nullspace of[D2(x)Vxh(x)] T is extracted from the last n-m columns

of Q. Note that [D2(x)Vxh(x)]T,[D(x)Vxh(x)] T and Vxh(x) T have the

same nullspace, since a < x < b makes D(x) necessarily nonsingular. The-

oretical details on this nullspace approach including the issue of the differ-

entiablitY of the matrix Z(x) can be found in Goodman [7] .

Once Z(x) is obtained, the step st is forced to satisfy

_ = z(_)_t.

Substituting this in the tangential subproblem described earlier yields

min_t lsTZ(x)THZ(x)st + [Z(x)T(D(x)Vfl(x'_) + Hsn)]rst

s.t. IIZ(x)_tll< _/_2_ 11_,,112.

Since the columns of Z(x) are orthonormal, []Z(x)$t[[ = [[st[[ 5, yielding

the following problem which we shall henceforth refer to as the reduced

tangential subproblem

min_, I$TZ(x)THZ(x)$t+[Z(x)T(D(x)Vfl(x,A)+ Hsn)]Tst

_.t. II_,ll< _/,_ -II_,_ll_.

Now x is updated as x _ x + s, where

s = D(x)(sn + Z(x)$t).

5sTtZTZst --_sTst, since zTz is the n - m x n - m identity.



3.2 Unscaled step subproblems

The trust region subproblem in terms of the unscaled step can be derived in

one of three ways (all of which may not follow, the formulation of trust-region

theory):

Based on the Newton steps directly

Based on the Newton step in (5), the trust region subproblem in the

unscaled step can be written directly as

_n _-_r_ + Vxl(x,A)Ts

_.t. V_h(x)%+ h(x)= 0

I1_11< _,

where

/t = V_l(x, A) + diag(V_l(x,A))diag(rl(x))D-2(x).

Decomposing the step s as before, the normal and tangential subprob-

lems, respectively, turn out to be

rain l]Vxh(x)Tsn + h(x)ll 2
8n

_.t. I1_11< _
and

min_t _ $TZ(x)T[-IZ(x)$t+[Z(x)T(VxI(x'A)'_ HSn)]Tst

_.t. I1_11<__/_2_ i1_tl_

Then the full step s becomes

s = s,_ + Z(x)_t

This formulation will generally be referred to as unscaled version 1

The untraditional and possibly unwanted feature of this is that the nega-

tive gradient step for the horizontal subproblem is along -Vxl(x, A) and not

along -D2(x)Vzl(x, A), which is what the KKT conditions require. This is

dealt with in the following formulation.
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Based on the original Newton step in (4), only the horizontal sub-

problem turns out a little different:

min_ _sT Z(x)TD2(x)fIZ(x).St + [Z(x)T D2(x)(VxI(x,,k)'_ I-ISn)]T$t

s.t. I1_,11< v/_2-II_nH2.

The negative gradient step now does point along -D2(x)Vfl(x, +_), however

the symmetricity of the second order term is lost, which is also untraditional

in trust region formulations.

This formulation will be referred to as unscaled version 2

Restoring the scale in the scaled step subproblems

Yet a third formulation can be obtained indirectly by substituting

sn _- D-l(x)sn

and Z_t ,'-- D-l(x)Zst

in the scaled step subproblems. The normal and tangential subproblems

thus obtained are:

min I]Vxh(X)TSn + h(x)ll 2
3n

_.t. IID-l(x)_nll < ._

and

rain
_t

I$T Z(x)T D-I(x)H D-Z(x)Z(x)$t+[Z(x)T (v fl(x, %)+ D -1Hsn )]T$t

8.t. IID-X(x)Z_tll< X/,52- Ilsnll2,

where, as defined before,

H = D(x)V21(x,)OD(x) + diag(Vfl(x,A))diag(_l(x)).

Also observe that

D-I(x)HD-I(x) = [-I.

This formulation is along the lines of Coleman & Li and it is a formulation

of this type that they use to prove their convergence results. However, this

9



is not equivalent to the scaled step subproblem in the sense that the steps

obtained may not be identical when the trust region constraint is binding

(see Appendix A).

This formulation will be referred to as unsealed version 3.

Mixed unsealed version

An observation is in order regarding the vertical subproblem: if _n is

the Newton step for the vertical subproblem in the scaled step and 8n is

the Newton step for vertical subproblem in unsealed versions 1 or 2, then in

general,

#
Proofi

The scaled Newton step satisfies

= -h(x);

i.e.,

V_h(x)T(D(x)_) = -h(x).

The unsealed (versions 1 and 2) Newton steps satisfy

= -h(x).

The preceding yield

V_h(x)T(D(x)_n-sn)=O,

which necessarily implies D(x)_ - sn = 0 only if Vxh(x) T has full column

rank, which is never true because in our very problem statement we have

m < n and Vxh(x) T E _m×n

(QED)

Our computational experiments suggest that this fact could be respon-

sible for poor performance of the scaled version (or even unscaled version

3, which is derived from the scaled version) in some problems, which mo-

tivates the following mixed unscaled version. This version has the normal

subproblem as in unscaled version 1 (or 2) and the tangential subproblem

as in unscaled version 3, i.e.,

min IIVxh(x)Tsn + h(x)]l 2
8n

10



followedby

min
_t

I$T Z(x)TD-I(x)HD-_(x)Z(x)$t+[Z(x)T(vfl(x,)_)+D-1Hsn)]T$t

s.t. iiD-l(x)Z$t]] <_ ¢_2_ [Isnll2.

3.3 Interiorization

After calculating the step s, it is scaled by the damp!ng parameter r to

ensure that the updated x stays strictly feasible with respect to the bounds.

More precisely, let us define

Ui "- { a_=__ ifai>-ocandsi<O
8i '

1, otherwise

Then

Vi -_ { b_.L:_ ifb_<ooandsi>O
8i '

1, otherwise

r = amin(1, m.in{u_, vi}), (8)

where a = 0.99995 forces strict feasibility of x with respect to the bounds.

However, if some xi is too close to a bound and if the corresponding s_

violates that bound, it could happen that the corresponding ui or vi is too

small, making the damping parameter very small, resulting in very short

steps. To prevent this from happening, we choose a tolerance n and impose

the following conditions:

ifui<t¢, si=0, ui_l

ifvi<n, si=O, vi_-l.

In our implementation, we chose n = 10 -s. Thus the interiorized step is

8+--7"8.

11



3.4 Step acceptance criterion

As is common in trust region algorithms, whether a stei) is accepted or not

is based on the accuracy of the actual decrease in a merit function relative

to the predicted decrease. Let us denote by [ the commonly chosen 12 norm

augmented Lagrangian merit function in equality constrained optimization:

/(x, A,p) = f(x) + Arh(x). + Pllh(x)ll _,

where p is a positive number bounded below and is updated at each iter-

ation. Most standard convergence results require {Pk) to form a nonde-

creasing sequence. However, E1-Alem [5], [6] has proved convergence for a

nonmonotonic update of p.

Let x + = x + s, A+ be the A updated according to the projection for-

mula (7). Adapting from Coleman and Li [1], we define actual reduction

as

ared = [(x,)_,p) - [(x+,A+,p) - lsT[diag(VxI(x,A))diag(_(x))D-2(x)]s.

The last extra term accounts for the fact that/is not exactly the augmented

Lagrangian for our general NLP, which also has bounds on x. It should be

noted that Vicente in [3] proves all his results without .this term in his ex-

pression for ared.

Recalling the Newton step in (5) on the original KKT system, the pre-

dicted decrease in the quadratic model is expressed as

1 Tr,..,21_ x dihg(V_l(x,
pred = --[Vj(x,A)]Ts - -_s iv x _ ,A)+ )_))diag(rl)D-2(x)]s -

(V h(x)Ts + h(x)) T/ A + p(llh(x)l]2-I]Vxh(x)Ts + h(x)[I2)

where/kA = )_+ - A.

ared
The step is usually rejected when _ < 10 -4, and accepted otherwise.

However, computational experience shows that approximate solutions to the

trust region subproblems can often result in negative values of pred. In such

a case the step could be admitted even if ared < 0. To prevent this, our

ared > 10-4 for step accep-implementation requires ared > 0 in addition to _ _
ared

tance. The trust region radius is updated according to a rule based on pr_----_

12



describedlater.

A startling observationmadein courseof our computationalexperiments
wasthat the stepsgeneratedby our algorithm seemedto alternate(wedon't
necessarilymean exactly every other step) betweenimproving either the
merit function l(x, _, p) or the merit function defined by

I D2(x)Vxl(x,_) :¢(x, _) = h(x) '

which is a reasonable merit function considering that

[ D2(x)Vj(x,_) ]h(x) =0

is the system of nonlinear equations which we aim to solve. Computational

observations suggest that except in the neighborhood of the solution, both

the merit functions rarely exhibit improvement simultaneously. So using

only the [(x, A, p) merit function could lead to rejection of steps which actu-

aly make progress towards the solution. In our implementation, we declare
ared

a step as acceptable when it satisfies _ > 10 -4 for any one of the two
merit functions. This strategy results in a huge reduction in the number of

iterations, and hence function and gradient evaluations. Actual reduction

for ¢(x, )_) is obviously

Remembering that

ared¢ = ¢(x,A) - ¢(x+,)_+).

¢(x,_)= D2(x)Vxl(x'_)h(x) i

predicted decrease can be defined as

pred_ 1)

where

= IID2(x)Vj(x,_)l] 2 + l]h(x)l]:,

= ¢(x, A)- IIHos + D2(x)V_l(x,)_)H 2- HV_h(x)T8 + h(x)ll2,

Ho = D2(x)V21(x,A) + diag(Vxl(x,A))diag(rl(x)).

Alternately, since

V_,_ [ D2(x)Vj(x')_)h(x) ] H0 V_h(x) ]= V_h(x) T 0

13



an expressionfor pred (usingonly a first order approximation)could be

= V_h(x) r 0 /xA "

In our computation, we take pred¢ = pred (1), unless pred (1) < O, in

which case we take pr ed¢ = max{pr 1),prea(21}.

4 Further Computational Details

4.1 Solving the subproblems

There has been a considerable amount of work on computing approximate

solutions of trust region subproblems in recent years (see for example More

Sorensen [9], Zhang [11], Santos _< Sorensen [12], Sorensen [13], Steihaug

[14]). Standard convergence results usually require the computed step to

satisfy a fraction of Cauchy decrease or a fraction of optimal decrease in the

merit function, the latter being computationally more expensive but provid-

ing stronger results. Introductory material on this can be found in Dennis

& Schnabel [15].

Our forthcoming implementation uses More and Sorensen's subroutine

DGQTPAR described in [9] to compute the solution for the reduced tangen-

tial subproblem. The chief advantage of this is that it mostly returns a step

satisfying fraction of optimal decrease even if the subproblem is nonconvex.

Since it might be unreasonable to expect a positive definite Z(x)THZ(x) 6

this property of DGQTPAR is very desirable.

to

The normal subproblem in the scaled step can be shown to be equivalent

min lsnTT-/s_ + _fT8 n
sn 2

where

7-l = [D(x)Vxh(x)][D(x)Vzh(x)] T,

7 = D(x)Vxh(x)h(x).

6Since there is no guarantee that (_Y_l(x+,$ +) -_7xl(x,)_+))Ts > 0 , not even the

BFGS update is guaranteed to be positive definite.

14



This subproblemis alsosolvedusing DGQTPAR. It shouldbe noted that
the matrix 7-/is positive semidefiniteand is necessarilysingular; however
DGQTPAR canhandlethis singularity.

The normal subproblemin the unscaledstepis exactly the sameasthe
abovewith D(x) replaced by In.

It must be mentioned that the computational results reported later were

generated using a Matlab implementation, which approximates the solutions

to the above trust region subproblems using dogleg steps (see, for example,

Dennis & Schnabel [15]).

4.2 Role of QR factorization

The QR factorization of D2(x)V_h(x) plays an important role in our algo-

rithm and implementation and hence deserves special' mention. Let the

QR factorization for D2(x)Vxh(x) be partitioned as below 7 (recall that

m=dim(h))

Y = Q(:,l:m)

Z = Q(:,m + 1 :n)

= R(1 : m, 1 : m).

The columns of Y contain an orthonormal basis for the range of D2(z)Vzh(x),

or of V_h(x), since D2(x) is nonsingular when a < x < b, and the columns

of Z contain an orthonormal basis for the nuUspace of [D2(x)Vah(x)] T or of

Vxh(x) T. Further, k is upper triangular and nonsingular and rows m+ 1 : n

of R contain only zeros. Hence

QR = Y.R

The use of Z in eliminating the equality constraints in the tangential sub-

problem has already been discussed; now we discuss how the QR factoriza-

tion is used in updating A using projection formula (7) and in computing sn.

Substituting D2(x)V:_h(x) = QR = Y[_ , projection formula (7) takes

the form

)_ = _[[_TyTy_]-I [tTyT D2(x)V_f(x)

7We assume that the reader is familiar with Matlab or FORTRAN 90 syntax for ref-

erencing matrices.
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= _[_T [g]-I _TyTD2(x)Vzf(x)

kT R._ = -kTy T D2(x)V_f(x).

Since /_T is nonsingular, the above is equivalent to

R)_ = -yT D2(x)Vzf(x)

Since k is upper triangular, A can be found from the above by simple back

substitution involving only O(m 2) operations, which is considerably eco-

nomic in comparison with standard Gaussian elimination on (7).

An important observation here is that the computation of _+ is depen-

dent on D(x+), which itself depends on the sign of (Vj(x +, A+))_, and thus

requires an estimate of A+. In practice, D(x) is updated first and D(x +) is

obtained using the old multipliers; i.e., D(x +) is obtained using the signs of

the components of Vj(x +, A(0). The QR factorization of D(x+)V:_h(x +) is

then computed and stored for use in the next iteration and A+ is obtained

using this new QR factorization as in (7). This intermediate QR factor-

ization can be an unnecessary additional expense when steps get rejected

frequently, but can probably be reused in the next step wherever the model

is good, in particular in the neighborhood of a solution.

However, in practice, even this strategy can perform poorly and give

inaccurate results, and we need yet another round of predictor-corrector re-

finement of D(x) and A. It has been found that the strategy that gives

fewest iterations is finding A(0s first with D(x+), found using VJ(x +, A),

then updating D(x+), using Vx/(x +, )_(0), and then updating the multiplier

once again using the new D(x +) to finally find ,_+. However, this requires an

extra intermediate QR factorization which certainly cannot be reused, but

is a necessary expense in our opinion. Approximate strategies for updating

the QR factorization might be helpful here; if one can be devised. Other

multiplier update formulas which avoid the QR factorization are also being

looked into.

s)_(i) for 'intermediate multipliers'.
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4.3 Trust region update

The strategy for updating the trust region radius _ is as follows:

ared

Let r = "pred"

• If r < 10 -4 or ared < 0 (step is rejected)

Let

0.5,
fh = 0.25,

0.1,

then 6 = max{/31 min(_, [ISll),6min}.

if6 _< 10

if 10<__104 ;

if (_ > 104

else step is accepted.

• Ifl0 -4 _< r < 10-2,_ = max{0.56,_,_in, IIsN}

• If 0.01 <_ r < 0.i, _ = max{0.9$, 'Stain}

• If r _> 0.75,

Let

10,

5,

/32 = 4,

2,

then 6 = min{/32_f,/fmax}

if 6 < 10 -.4

if 10 -4 < 6 < 0.1

if 0.1<6<100

if 6 > 100

4.4 BFGS Approximation

The second order quantity V2xl(x, A) is estimated by the BFGS approxima-

tion (see Dennis _: Schnabel [15] for details). Given the current approxima-

tion B, the updated B + can be described as below:

y = vj(x+, A+) - Vj(x, +)

w=Bs

yyT ww T
B+=B+

yT s wT s •
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It canbeseeneasilythat if B is symmetric, so is B +. Further, if yT_ > 0

and B is positive definite, so is B +.

4.5 Penalty parameter update

The penalty parameter p is updated according a scheme similar to that in

E1-Alem[4], customized for our setting.

If pred > 0.5 p (llh( )ll2 -IIV_h(x)s + h(x)ll2)

else

p+ =p

P+ - 2llh(x)ll2- IIV_h(x)8 + h(x)ll 2 + _'

where fi is a fixed positive parameter, chosen to be 10 in our implementation
and

I_ = D2(x)V2zl(x,A) + diag(Vxl(x,A))diag(rl(x))

It is not difficult to see that this update yields a non-decreasing sequence of

penalty parameters, provided Hh(x)H 2 -[]Vzh(x)s + h(x)]l 2 > O.

4.6 Scaling matrix in the implementation

Vicente in [3] reports that the following form of the vector d(x) is more

efficient in dealing with bounds that are far from active at the solution,

which is corroborated by a huge reduction in the number of iterations in our

computational experience.

{ min{1,_}, if (V_/(z,$))i < 0 and bi < oo
d_(x) = min{1, _}, if(V_l(x,)_))i>Oahda_>-oo,

1, otherwise

Our computational experience suggests that the vector z/(x) should remain

as defined in (3).

4.7 Stopping Criterion

The stopping criterion is partly determined by the norm of the stopping

vector 8v which is defined as

svi = min{](Vxl(x,A))il,d_(xi)}
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The current point is reportedasoptimal when

[[sv[[< n,stoptol and []h[] < m,htol.

Our implementation uses stoptol = 10 -6 and htol = 10 -s. This absolute

tolerance worked well for our test problems, a relative tolerance criterion

could also have been used.

4.8 Handling degeneracy

It is well known that Newton's method can face computational difficulties

and convergence can be retarded if the solution is degenerate, i.e. if there

exists i E 1,...,n such that

2 *
di(xi) = 0 and (Vzl(x*,A*))i = 0

To deal with the above degeneracy, Vfl(x, A) is redefined as below in a

manner similar to Coleman & Li [2] :

{ (vg(x,_))_ + _, if I(V=l(x,_))_[+ [d_(z_)l___I_1(Vfl(x,A))i = (Vfl(x,A))i, otherwise,

where

and, say, #c = 10 -8. Note that choosing stoptol _< #_ can preclude conver-

gence.

5 Observations on incorporating inequality con-

straints

As was stated in the introduction, this formulation can be used to handle

smooth nonlinear inequality constraints by adding slack variables to the

inequalities. Let us consider the general nonlinear programming problem

with equalities and inequalities

min f(x)
a7

s.t. c(x) = 0

9(_) < o
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aKxKb,

which is equivalent to

rain f(x)
X

s.t. c(x) = 0

g(x) + s = 0

a<_xKb

8>_0.

Let dim(g) = p, the number of inequalities, and dim(c) = k. Now the

scaling matrix D(x) becomes D(x, s). A close look at Vx,sl(x, s, )_) shows

that using our previous definitions, the last p components of the vector

d(x, s) are defined as

{ min{1, v/_}, if ,_n+i >_ 0dn+i(si) = 1, "otherwise

for i = 1,...,p.

A quick look at the last p components of V_,sl(x, s, _) = 0, reveal that it is

only an explicit restatement of complementarity. Observing that ,_n+i, i =

1,...,p, are just the multipliers of the inequality constraints (commonly

denoted by #), the above definition of dn+i(si) is easily identified as the

mechanism forcing nonnegativity of the Lagrange multipliers of the inequM-

ity constraints.

Finally, the requirement of V_h(x) having full rank gets translated into

[Vx,sc(x), Vx,sg(x) + s] having full rank. Given that V_c(x) = 0pxk and

V_g(x, s) = Ip, it becomes equivalent to only V_c(z) having full rank. Note

that this requirement on the rank stems simply from the issue of/_ from

the QR factorization being nonsingular, and not from satisfying a constraint

qualification at the solution. Also note that the m < n requirement earlier

now becomes p + k < n + p, which is the same as k < n.

6 Some Computational Observations

• Speed of convergence is very sensitive to v, the parameter in the nor-

mal subproblem which determines what fraction of the total trust re-

gion radius would be allowed for the horizontal subproblem. For an
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efficient implementation applicable over a wide range of problems, a

strategy for adapting u based on the iteration history should certainly

be devised.

• Convergence is also very sensitive to the initial trust region radius.

• It is fairly sensitive to the trust region update scheme. Here we have

presented what seemed optimal based' on our computational experi-

ences.

• The number of iterations 9 is greatly reduced, often by hundreds, if we

do not reject the very first step that fails to satisfy the step acceptance

criterion but accept it instead.

Below are results of computational tests using a Matlab 4.2a implemen-

tation (on a SUN OS 4.1.3 workstation) on a few test problems. The best,

followed by the worst performance (for the few parameter settings we at-

tempted) are tabulated for the scaled version, unscaled versions 1, 2, & 3 and

the mixed unscaled version along with their corresponding u and _0. Unless

otherwise mentioned, by default the initial trust region radius _0 is set to

2max{llXoll, 1}, _ = 1000,p0 = 1 and the first rejectable step is accepted.

The stopping criterion is as mentioned earlier. Results from a primal-dual

interior point algorithm and Matlab's active set general NLP solver constr

are also provided for the sake of comparison.

Problem 1

min f(x) = xl2 + 3x2 - O.lx3x4 +. e -_2 + (x5 - 2x2) 2
X

_.t. Xl + 2x2 + 4x3 + 6x4 + 7x5 = 0

Xl2 -- 3x22 -{- 0.3x2x4 -- X5 -- 0

2Xl + x2 - 0.1x 3 = 0

3x_ + 4(x2 + Xs) 2 = 25

-10_<xi< 10, i= 1,2,3,5

-11 _ x4 _< 10

9Which is exactly the same as the number of function and gradient evaluations in our
way of counting.
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ThreeKKT points1°werefound in courseof thesecomputations:

• [-2.2098, 1.4782,10.0,-3.1898,-3.0868], with f* = 49.2568 (referred

to as KKT pt. 1)

• [1.4793,-0.6858,10.0,-9.9893, 2.8326] with f* = 29.7818 (KKT pt. 2)

• [0.0882, -0.73, 2.2183, 0.8134, -1.7689], with f = -0.1921, the lowest

function value among the three (KKT pt. 3)

Starting point:x1 = -6.3, x2 = 1.0, x 3 -- 1.0, x4 = 0.55, x5 = 1.0.

Subproblem type iterations

9
scaled

unscaled v.1

unscaled v.2

unscaled v.3

mixed unscaled

Y

0.5

14 0.7 default

40 0.5 default

46 0.7 default

40 0.5 default

45 0.7 default

53 0.5 default

69 0.7 default

53 0.5 default

58 0.7 default

60 Point of convergence
default

KKT pt. 1

KKT pt. 1

KKT pt. 1

KKT pt. 1

KKT pt. 1

KKT pt. 2

The primal-dual interior point method with essentially line search global-

ization 11 converged in 31 iterations to KKT point 2. The stopping criterion

for the primal dual algorithm was

IlVg(x,.x,  , b)ll + Ilhll _<10-6

Matlab's constr converged in 9 iterations to KKT point 1.

Starting point of xl was changed to +6.3.

l°Karush-Kuhn Tucker points, i.e., points satisfying first order necessary conditions for
optimality.

11The implementation we used might not be the best available.
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Subproblem type iterations
12

scaled

unscaled v.1

unscaled v.2

unscaled v.3

mixed unscaled

50

0.6 default

81 0.45 1.0

29 0.8 1.0

120 0.8 default

29 0.8 1.0

121 0.8 default

34 0.7 1.0

108 0.75 default

29 0.8 default

134 0.6 default

Point of convergence

KKT pt. 2
i

KKT pt. 3

KKT pt. 2

KKT pt. 3

KKT pt. 2

KKT pt. 3

KKT pt. 2

KKT pt. 3

KKT pt. 2

Primal-dual interior point, as before, converged in 31 iterations to the

second KKT point.

Matlab's constr did not converge in 500 iterations.

Problem 2

Same as the first problem, except that the fourth equality was now con-

verted to an inequality, i.e.,

3x_ + 4(x2 + xs) 2 _< 25

and a slack variable was added to get it in our form:

3x_ + 4(x2 + xs) 2 + x6 = 25

x6_>0.

Observe that the previous KKT points are still KKT points for this prob-

lem (with the slack variable x6 = 0.) so they shall be referred to as KKT

points 1, 2 and 3 as before.

Starting point: [6.3, 1, 1, 0.5.5, 1, 1] (last variable is a slack):
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Subproblemtype iterations
31

scaled

unscaledv.1

unscaledv.2

unscaledv.3

mixed unscaled

Y

0.6

> 500 0.65

46 0.8

95 0.65

43 0.8

99 0.65

148 0.5

256 0.65

55 0.65

> 500 a 0.6

(_0 Point of convergence

1.0 KKT pt. 2

default n/a

1.0 KKT pt. 3

default KKT pt. 2

1.0 KKT pt. 3

default KKT pt. 2

100 KKT pt. 3

1.0 KKT pt. 2

default KKT pt. 3

default n/a

_Converges in 49 iterations to KKT pt. 3 if the second merit function is dropped.

Primal-dual interior point converges in 48 iterations .to the second KKT

point.

Matlab's constr converges in 101 iterations to point 3.

Starting point changed to [-9,-9,-9,-9,-9, 1]:

Subproblem type iterations

50
scaled

unscaled v.1

unscaled v.2

unscaled v.3

mixed unscaled

/2

0.8

141 0.65

100 0.6

119 0.65

98 0.6

117 0.65

103 0.8

119 0.5

104 0.6

129 0.65

_o Point of convergence

1.0

default

default

default

default

default

default

default

default

default

KKT pt. 3

KKT pt. 3

KKT pt. 3

KKT pt. 3

KKT pt. 3

Primal-dual interior point does not converge in 800 iterations.

Matlab takes 22 iterations to converge to point 3.

Starting point changed to [9.5, 9.5, 9.5, 9.5, 9.5, 1]:
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Subproblemtype iterations
39

scaled

unscaledv.1

unscaledv.2

unscaledv.3

mixed unscaled

zJ (_0
0.7 1.0

79 0.8 1.0
103 0.8 1.0
125 0.65 default
140 0.8 default
183 0.8 1.0
69 0.8 default
87 0.65 default
69 0.8 default
87 0.65 default

Point of convergence

KKT pt. 2

KKT pt. 3

KKT pt. 2
KKT pt 3

KKT pt. 3

KKT pt. 3

Primal-dual convergesin 68 iterations to the secondKKT point.

Matlab convergesto KKT point 2 in 74 iterations.

Problem 3

The last three equalities in problem 1 were converted to _< inequalities

and slacks were added to them.

All the convergent runs of our algorithms converged to only one KKT

point: [-0.0131, -0.8609,1.6511,1.1007, -1.6390, 0.8687, 0.4467, 0] (last three

slack variables) with f = -0.3921, hence the point of convergence is omitted

from the table. The first two inequalities are inactive and the last one is

active.

Starting point: [2, 6, 6, -6, -6, 2, 1, 1] (last three variables are slacks on

the inequalities)
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Subproblemtype iterations
scaled > 500

187
unscaledv.1

unscaledv.2

224

mixed unscaled

202
220

unscaledv.3 > 500
78

223

alp def., 1.0
0.8 default
0.65 1.0
0.75 1.0
0.65 default
all n/a
0.7 1.0
0.65 default

°Indicates that it did not converge for all the parameter settings attempted

Primal-dual interior point did not converge in 500 iterations.

Matlab converged in 38 iterations.

Starting point changed to [6.3, 1, 1, 0.55, 1, 2,1,1].

Subproblem type
scaled

unscaled v.1

unscaled v.2

unscaled v.3

mixed unscaled

iterations _0/]

> 500 all def., 1.0

167 0.8 default

175 0.65 default

166

> 500

191

not conv.

82

0.65

0.8

0.65

other a

0.55

0.65266

default

default

default

i0.0

1.0

_Did not converge for other attempted parameter settings

Primal-dual interior point failed to converge within 500 iterations.

Matlab converged in 60 iterations.

Problem 4

(Hock & Schittkowski test problem set, no. 100)

min f(x)
X
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= (xl-10)2+5(x2-12)2+x4+3(x4-11)2+10x6+7x_+x4-4x6xT-10x6-8x7

s.t. 2x_ + 3x 4 + x3 + 4x24 + 5xs <_ 127

7Xl + 3x2 + 10x32 + x4 - xs __ 282

23xl + x_ + 6x 2- 8x7 < 196

4x_ + x_- 3xlx2 + 2x_ + 5x6- 11x7 _< 0

This problem was converted into our required form using slack variables,

and f(x) was scaled by 10 -3 to reduce ill-conditioning.

Convergent runs converged to only one KKT point,

[2.3309, 1.9459, -0.4747, 4.3794, -0.6238, 1.0.372, 1.5954, 0, 252.5904, 144.9098, 0]

with f* = 680.6, the first and last inequalities being active, and the second

and third being 'highly inactive'. Instead of focussing on the difference

between the best and worst number of iterations due to changes in 50 and

u, we tabulate representative results for each of the algorithms below.

Starting point: [1, 1, 1, 1,1,1,1,1,1, 1, 1] (last four slacks)

Subproblem type No. of iterations _,

scaled > 500 _

unscaled v. 1 238

unscaled v.2 229

unscaled v.3 ill-cond

mixed unscaled

0.6

0.6

268 0.55

50

default

default

default

ahigh ill-conditioning after 300 iterations

The primal-dual interior point code available to us required at least one

upper bound, so we set the upper bound on x2 to 10000 (which is not active

at the solution), however it did not converge within 500 iterations.

Matlab's constr converged in 273 iterations.

Problem 5

(Hock & Schittkowski test problem set, no. 81)

min eXl_2x3x4x5 _ l(x3 + x 3 + 1) 2
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Ij fl = lo

X2Z 3 -- 5X4X 5 -- 0

+ + 1 = o

-2.3 < xl,x2 < 2.3

-3.2 < x3, x4, x5 < 3.2

Eleven distinct KKT points were found in course of the numerical ex-

periments, most of them with f* = 1, one with f* = 0.0539 and another

with f* = 0.4389. For the sake of elegance, a list of those KKT points and

thereof is skipped.

Starting point: [1, 1, 1,1, 1]

Subproblem type No. of iterations

scaled 22

unscaled v.1 39

unscaled v.2 35

unscaled v.3 42

mixed unscaled 33

Primal-dual converges in 49 iterations.

Matlab converges in 96 iterations.

New starting point: [2, -2, 2, -2, 2]

v 5o

0.65 default

0.75 default

0.75 default

0.65 default

0.75 default

Subproblem type No. of iterations
scaled 363

unscaled v.1 306

unscaled v.2 19

unscaled v.3 77

mixed unscaled 42

t, 50

0.8 default

0.65 default

0.65 default

0.75 1.0

0.65 1.0

Primal-dual interior point does not converge in 500 iterations, and nei-

ther does Matlab's constr.
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6.1 Inferences

Since the range of problems tested here was fairly restricted, no attempts will

be made to make sweeping generalizations based on the above observations.

It does seem however that the scaled version fails to perform well in the

presence of nonlinear equalities, though it does remarkably well otherwise.

The sensitivities of the convergence to _ and _0 were among the two chief

things we aimed to and did demonstrate. The algorithms are still under

development and further testing is in progress. The mixed unscaled version

is arguably the most robust of the algorithms and will .be the prime focus

of further development. Our forthcoming implementations in Fortran and

C will use DGQTPAR to solve the subproblems, and could provide further

improvements on the performance reported here, since this implementation

only uses dogleg steps.

6.2 Advantages

The chief advantages of this algorithm are over other algorithms for the

general NLP are as follows:

• Solves the 'sticking problem': Many primal-dual interior point algo-

rithms have the undesirable property that some of the bounded vari-

ables often get 'attracted' to the wrong bounds and when the iterates

reach the bounds they 'stick' to those bounds which do not corre-

spond to the solution, and hence convergence is hindered. 12 This is

one problem that is apparently solved by the Coleman-Li scaling, since

the scaled step is sufficiently 'angled away' from approaching bounds.

The starting points for several of our tests were very close to the vari-

able bounds, but the 'sticking phenomenon' never occurred. Similar

observations are also made in Coleman & Li [1], [2] and in Vicente [3].

• Reduces the number of variables: Since this algorit'hm never computes

or requires the multipliers of the bound constraints, the number of

variables is greatly reduced compared to primal-dual interior point

methods or active set algorithms.

• Advantage over active set algorithms: This algorithm wins over active

set algorithms in the same manner as any other interior point algo-

rithm. In particular, it is well-known that active set strategies can be

12the reason for this becomes clear on examining the Newton step on the complemen-

tarity conditions.
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very inefficient in the presenceof a large number of bounds and/or
a large numberof inequality constraints,especiallywhen most of the
boundsor inequality constraints are not active. Further, an active
set strategy canidentify the wrong activeset and convergeto a point
wheresomeof the inequalitiesor boundsarenot satisfied.

7 Conclusion

An interior point algorithm for solving the general nonlinear programming

problem using trust region globalization was presented. It is quite likely that

it would be possible to rigorously prove under reasonable assumptions global

convergence of the iterates and local q-quadratic convergence in the presence

of exact second-order information or local q-superlinear convergence using

a secant aproximation. Our aim in this paper, in addition to motivating

theoretical analyses of this algorithm, was to extract from computational

experiments ingredients, perhaps heuristics, needed to expedite the semi-

local convergence of this algorithm. With more computational tests on a

wider set of problems in progress, the author hopes that this treatise would

attract other computational scientists and theoreticians to study this algo-

rithm in further depth. In fact, Dr. Mahmoud E1-Alem i.s currently involved

in proving convergence for these algorithms.

8 Appendix A: Non-equivalence of subproblems

in scaled and unscaled steps

Consider Coleman & Li's scaled and unscaled subproblems in [1], rewrit-

ten in our notation (B is an approximation to V2f(x), D = D(x), and

J = diag(Vxf(x))diag(_(x)):

Scaled subproblem

min 1J[DBD + J]_ + [DV_f(x)] T
2

_.t. Ilal-<,_

Unscaled subproblem

rain_T(B + JD-_)_+ Vxf(x)Ts
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8.t. llD-Isll 6.

Let the multiphers of the trust-region inequalities for the two subproblems

be respectively _ and #. Suppose the Newton steps are outside the trust

regions, so that corresponding to the optimal steps, # > 0 and _ > 0 and

the trust region inequalities are active. Suppose there does not exist an

eigenvalue of D 2 equal to _ that has s as its corresponding eigenvector.
Then

Proof:

Recalling the necessary condition for optimality, the optimal step from the

scaled subproblem must satisfy

(DBD + J + f_I)_ = -DVzf(x)

=_ (DB + JD -1 + _D-1)D_ = -DVj(x).

Since J, D are diagonal, we have

(B + JD -2 + pD-2)D_ = -V=f(x). (9)

Similarly, the optimal step from the unscaled subproblem satisfies

=- (B + JD -2 + #)s = -Vx/(x). (10)

The proof now follows by contradiction. Assume that D_ = 8. Then

substituting s for D$ in (9) and subtracting (9) from (10) we get

- = 0.

Thus, since # > 0

D28 = fts.

#

But the above cannot hold since, by hypothesis, _ is not an eigenvalue of

D 2 with corresponding eigenvector s.

Hence, by contradiction,

D_s (QED)

It is noteworthy that since D 2 is diagonal with nonzero entries, its eigen-

vectors are the canonical basis vectors ei of T_n, hence for a step s to even

qualify as an eigenvector of D 2 would me£n that it must have only one

nonzero element.
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